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Abstract: In this literature review, primary attention is paid to the current 

understanding of the role of the glymphatic system (GS) in the development of 

brain edema (BE) in traumatic brain injury (TBI) and ischemic stroke. We 

discussed recent studies suggesting that glymphatic function is downregulated 

in brain pathologies and that glymphatic deficiency may contribute to BE in 

TBI and ischemic stroke. A new understanding of how behavior, genetic 

predisposition, and drugs affect HC function and how this function is 

decompensated in brain pathologies should lead to the developing of new 

preventive and diagnostic tools and new therapeutic targets. 
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Currently, there is no complete picture of the conjugation of cerebral blood 

flow, liquor circulation and interstitial space in brain edema (BE). This review of the 

literature is devoted to the recently discovered system of purification in the brain - the 

GS in ischemic stroke and traumatic brain injury (TBI). 

BE is a complication of many diseases, and not only neurological ones. BE is 

the leading mechanism of thanatogenesis in patients with severe cerebral and 

extracerebral processes in intensive care units. BE has been described since before 

our era, but so far we know little about this universal process. In the historical aspect, 

interest in BE either appeared or disappeared for many years and was renewed only 

with the appearance of new research methods. Currently, there is renewed interest in 

the problem of BE, this is due to the ability to see morphological changes using 

neuroimaging methods and to study the molecular genetic mechanisms of BE 

formation using various experimental models [2,8]. 

After damage to the central nervous system (CNS), for example, in stroke, 

trauma, intracranial volumetric lesions, inflammatory reactions, metabolic disorders, 

the blood-brain barrier (BBB) is destroyed, exudation and accumulation of water and 

macromolecular substances. In perivascular and interstitial cells. Brain tissue 

hypoxia, cell membrane dysfunction, or intracellular electrolyte and osmotic changes 

lead to intracellular edema in the injured brain. In an injured nervous system, 

obstruction of the cerebrospinal fluid (CSF) circulation pathway causes ventricular 

enlargement or periventricular leukoencephalopathy. Brain edema after stroke and 

TBI increases intracranial pressure (ICP), which in turn exacerbates BE, 
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An important step in understanding the significance of the accumulation of 

excess fluid in the cranial cavity was the work of the Scottish anatomist A. Monro 

Secundus (1733–1817). The author introduced the concept of intracranial pressure 

(ICP), which occurs as a result of the impact of the contents of the skull (brain 

substance, blood in arterial and venous vessels) on its rigid walls, and described the 

mechanism of cerebral hernia formation. In his work "Observations on the structure 

and functions of the nervous system". In 1824, the A. Monro hypothesis, after 

multiple tests, was supported by G. Kellie (1770–1829) and subsequently became 

known as the Monro–Kelly doctrine [1,11]. 

Clinical diagnosis and monitoring of BE remain an unresolved problem. Both 

the development and course of BE is an asymptomatic process. Only the addition of 

complications of BE in the form of ICH is accompanied by the development of 

cerebral and focal neurological symptoms as a result of compression and 

displacement of cerebral structures by edema, as well as the formation of secondary 

ischemia [1,13,27]. Currently, the method of choice for diagnosing BE is 

neuroimaging (computed tomography - CT and magnetic resonance imaging of the 

brain) [31,36,39,46]. One of the early markers of BE is a decrease in the volume of 

the sulci [29]. However, the limitations on the use of radiological methods and the 

discontinuity of the study do not allow monitoring of BE [39]. 

Developments are underway to isolate potential biochemical markers of BE 

from the blood. Endothelin-1, which is involved in the pathogenesis of brain damage 

in various diseases and contributes to an increase in BBB permeability, is considered 

as such a marker. Cellular fibronectin, one of the components of the basement 

membrane, and matrix metalloproteinase-9, a proteolytic enzyme that causes 

remodeling of the basement membrane and destruction of close junction proteins in 

the structure of the BBB, can be recognized as other indicators of the development of 

pronounced BE and hemorrhagic transformation [20,26,55]. 

The GS (GS) is one of the missing links for understanding the conjugated 

functioning of all components of the central nervous system (intracranial blood 

volume, cerebrospinal fluid, cell mass, interstitial space) in normal and pathological 

conditions. The name “glymphatic system” was coined by the Danish scientist M. 

Nedergaard in recognition of the dependence of GS on glial cells and the similarity of 

its functions with those of the peripheral lymphatic system [42].  

The structure of the GS. According to a study conducted at the University of 

Rochester, subarachnoid CSF quickly enters the brain through the paravascular 

spaces surrounding the penetrating arteries and then exchanges with the surrounding 

ISF. In the same way, the ISF is cleared of metabolic products of the brain 

parenchyma through the paravascular spaces surrounding the large draining veins 

[42]. Where the PVR ends in the brain parenchyma, the CSF can continue to move 

along the basement membranes surrounding the arterial vascular smooth muscles to 

reach the basal plate surrounding the cerebral capillaries. perivascular spaces between 

the basement membrane, pericytes, astrocyte pedicels; system of aquaporin receptors 

of astrocytes; structures, producing and resorbing CSF; interstitial space of the brain; 

CSF circulation space [42,50]. 
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GS performs a number of functions, the most important of which is currently 

considered "cleansing", that is, the removal of metabolic products, toxic substances 

from the central nervous system. Evaluation of GS activity after acute 

cerebrovascular accident or traumatic brain injury can determine whether its activity 

correlates with neurological recovery. A new understanding of how behavior, genetic 

predisposition, and drugs affect GS function and how this function is decompensated 

in various pathologies should lead to the development of new preventive and 

diagnostic tools and new therapeutic targets [4]. 

Astrocytes play an important role in the removal of metabolites. They express 

water channels called aquaporins. However, until recently, no physiological function 

has been identified to explain their presence in mammalian CNS astrocytes. 

Aquaporins are a family of proteins that consist of six membrane domains and have a 

molecular weight of 30 kDa. They selectively let water molecules through, allowing 

it to enter and leave the cell, while at the same time blocking the flow of ions and 

other soluble substances. Compared to simple diffusion, the presence of aquaporins in 

biological membranes contributes to an increase in water permeability by a factor of 

3–10 [21, 58, 59, 63]. To perform a lymphatic function, the subarachnoid CSF must 

enter the brain and exchange contents with the ISF, and then return back to the CSF-

conducting spaces. The study of these pathways and mechanisms has been the subject 

of intensive study over the past few decades [24,32,40,44,52]. 

According to a new hypothesis, CSF follows the paraarterial spaces, mixes 

with the ISF and substances dissolved in it, and is removed from the brain through 

the paravenous spaces [42]. This pathway is based on the movement of fluid through 

AQP4 channels located on astrocytic stalks surrounding the parenchymal circulatory 

network. The second hypothesis states that the outflow of interstitial fluid and solutes 

occurs along the middle layers of the basement membrane of arterial smooth muscle 

cells in the direction opposite to the flow of substances in the paravascular pathway 

[25]. 

In 2015, a number of researchers suggested that eventually interstitial solutes 

leave the brain through the meningeal lymphatic vessels flanking the venous sinuses 

along the sheaths of the cranial and spinal nerves [22,47]. The exchange of solutes 

between the CSF and the ISF is mainly due to arterial pulsation and is regulated 

during sleep by the expansion and contraction of the extracellular space of the brain. 

Functions of the GS. GS performs a number of functions, the most important 

of which is currently considered to be “cleansing”, that is, the removal of metabolic 

products, decay, and toxic substances from the central nervous system. In mice with 

reduced AQP4 function and, accordingly, GC, the clearance of solutes, including 

mannitol and Aβ, is significantly impaired. In addition, increased glymphatic 

clearance has been found to be responsible for the decrease in brain lactate levels that 

accompanies the transition from wakefulness to sleep [42]. Inhibition of glymphatic 

clearance has been observed in anesthetized mice, in AQP4 deletion treated with 

acetazolamide, on cistern puncture or head repositioning, resulting in elevated lactate 

levels in the brain and in the lower cervical lymph nodes [48]. Apart from the 

clearance, this path is as shown 
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GS is involved not only in the excretion of metabolites, but also in the 

distribution of glucose, lipids, amino acids, various growth factors, and 

neuromodulators in the brain [23]. A decrease or increase in the level of ICP is 

mainly due to changes in the volume of intracranial contents, primarily blood and 

CSF. However, as mentioned above, the ISF is capable of migration, so it can be 

assumed that in the case of an increase in the level of ICP, this mechanism may be 

part of a compensatory reaction [27,33,54]. 

Glymphatic dysfunction, characterized by a lack of interstitial clearance of 

solutes, is a central feature of natural brain aging, as well as a wide segment of CNS 

diseases, including storage diseases (Alzheimer's, Parkinson's), traumatic brain 

injury, ischemic and hemorrhagic stroke [37,41,45,51 ,53,61]. 

Neuroinflammation reduces glymphatic clearance [35,43]. Inadequate 

expression of defensins (defensins are peptides that are released as part of the 

immune response to protect the brain from pathogenic microorganisms) [65] leads to 

the penetration of T-lymphocytes, viruses, and mediators into the CNS, disruption of 

the integrity of the BBB, and accumulation of Aβ [58]. Modern ideas about the 

pathogenesis of TBI are based on the identification of primary and secondary factors 

of brain damage [6,7,15,38]. If the primary damage in TBI is due to the direct impact 

of mechanical energy on the substance of the brain, then the secondary damage to the 

brain is an inflammatory reaction developed in the process of evolution, which 

develops in response to the primary mechanical damage. Such lesions are induced at 

the time of injury and develop over time, leading to irreversible ischemic damage to 

cells located in the immediate vicinity of the focus of primary damage (in the 

penumbra zone); at the same time, initially intact cells are involved in the 

pathological process [6]. The action of the primary traumatic agent triggers the 

development of biochemical and immunological reactions that lead to destructive 

processes.  

The action of factors of secondary brain damage leads to a disruption in the 

delivery of oxygen and nutrients to brain cells and causes their insufficient utilization. 

There are disorders of cerebral microcirculation, oxygenation and metabolism of 

neurons, brain edema and its ischemia develop [6,7,14]. Secondary ischemic brain 

damage, according to different authors, develops in 36.0–42.6% of patients with TBI, 

the severity of which corresponds to an average degree, and in 81.0–86.4% of 

patients with severe TBI. In this regard, prevention and timely correction of 

secondary brain damage factors remain the most important task in the treatment of 

patients with severe TBI [6,7,38]. 

Factors contributing to the development of secondary ischemic brain damage 

are divided into intracranial and extracranial. Intracranial factors include: intracranial 

hypertension, disorders of cerebral hemodynamics, occlusive hydrocephalus, 

ischemia, BE, and dislocation syndrome [16]. Many researchers, using the example 

of clinical cases, proved that after severe TBI, glymphatic outflow significantly 

decreased [75]. Reduced excretion of neuroinflammation mediators could be a key 

factor in the accumulation of tau protein aggregates in the damaged area and, 

consequently, the processes of memorization and storage of information 

[19,28,34,56,57].  
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Acute treatment of BE and increased ICP is a common problem in patients 

with neurological damage. Practical recommendations for the selection and 

monitoring of therapy for the initial treatment of BE for optimal efficacy and safety 

are generally not available. Clinicians should be able to select appropriate treatments 

for initial BE based on available evidence, balancing efficacy and safety [30].  

Evidence suggests that hyperosmolar therapy may be beneficial in reducing 

the increase in ICP or BE in patients with SAH, TBI, IIS, ICH, and HE, although 

neurological outcomes do not change. Corticosteroids help reduce BE in patients with 

bacterial meningitis but not in those with ICH. Differences in therapeutic response 

and safety may exist between HTS and mannitol. The use of these agents in these 

critical clinical situations requires careful monitoring of side effects. There is an 

urgent need for high-quality research to better inform clinicians about the best 

options for individualized care for patients with BE [8]. 

Despite the fact that BE was visually described more than 2 thousand years 

ago, understanding its formation and control over it remain an unresolved problem 

until now. In recent decades, people have learned to measure ICP and control its 

increase, but ICH is already a complication of BE. The GS is a newly discovered CSF 

transport system. Through the perivascular space and aquaporin 4 (AQP4) on 

astrocytes, it promotes the exchange of cerebrospinal fluid and interstitial fluid (ISF), 

cleanses the brain of metabolic waste, and maintains the stability of the internal 

environment in the brain. Excessive accumulation of fluid in the brain tissue causes 

BE, but the GS plays an important role in both the intake and removal of fluid within 

the brain. Changes in the GS after stroke may be an important factor in BE  

[9,10,17,64]. 

In an injured nervous system, obstruction of the CSF circulation pathway 

causes ventricular enlargement or periventricular leukoencephalopathy. BE after a 

stroke increases ICP, which, in turn, exacerbates BE, causes functional and structural 

damage to the brain tissue, leads to epilepsy, paralysis, aphasia, and other symptoms 

of brain damage. With further aggravation of BE or diffuse progression, herniation of 

the brain and damage to the brain stem occur, which ultimately leads to brain death. 

Thus, timely and effective control of BE is useful for improving the symptoms and 

prognosis of patients with stroke. It was believed that, unlike other parts of the body, 

the brain lacks lymphatic vessels. However, recent studies have shown that the GS 

transports metabolic waste andregulates the flow of CSF [3,18,62].   

Studies by several authors have shown that the GS can remove excess water, 

ions, and various solute molecules from brain tissue. On the one hand, the degree of 

BE decreases due to the outflow of water, ions and proteins from the lymphatic tract. 

On the other hand, with a decrease in BE, the function of the GS is gradually 

restored, which, in turn, contributes to the recovery of the central nervous system 

from BE and other pathological conditions. Recovery of the GS is associated with 

long-term prognosis in patients with BE after ischemic stroke [3,5]. 

Imaging studies of the GS and meningeal lymphatics using imaging 

techniques have confirmed that the meningeal lymphatics are downstream of the 

glymphatic pathway in humans. Therefore, the dural lymphatics are important 

pathways for the removal of intracranial solutes and CSF [65]. 
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The discovery of the GS expanded the understanding of brain transport 

pathways. In addition, the GS is not isolated, as it plays a role in the formation and 

regression of BE by interacting with other pathways for the transport of solutes and 

fluids in the CNS. Generally speaking, the study of BE is the study of the transport 

pathways of solutes and fluids in the CNS. Various molecules, including AQP4, 

transporters, ion channels, and vascular permeability factors, are believed to be 

associated with cytotoxic and vasogenic edema after CNS injury [13,17]. 

Thus, understanding the mechanisms of the GS in BE after stroke and TBI 

can provide a new goal and opportunities for treatment, thereby contributing to the 

restoration of neurological function and improving the prognosis of patients after 

stroke and TBI. Evaluation of GS activity after acute cerebrovascular accident or 

traumatic brain injury can determine whether its activity correlates with neurological 

recovery. A new understanding of how behavior, genetic predisposition, drugs affect 

GS function and how this function is decompensated in various pathologies will lead 

to the development of new preventive and diagnostic tools and new therapeutic 

targets. Further study of the pathophysiological and regulatory mechanisms of the GS 

in BE after stroke will help to find an innovative goal and direction of treatment. 

More clinical trials are needed to test drugs aimed at regulating the GS. 
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